Energies, group-invariant kernels and numerical integration on compact manifolds

نویسندگان

  • S. B. Damelin
  • Jeremy Levesley
  • David L. Ragozin
  • X. Sun
چکیده

The purpose of this paper is to derive quadrature estimates on compact, homogenous manifolds embedded in Euclidean spaces, via energy functionals associated with a class of group-invariant kernels which are generalizations of zonal kernels on the spheres or radial kernels in euclidean spaces. Our results apply, in particular, to weighted Riesz kernels defined on spheres and certain projective spaces. Our energy functionals describe both uniform and perturbed uniform distribution of quadrature point sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENERGY ESTIMATES AND THE WEYL CRITERION ON COMPACT HOMOGENEOUS MANIFOLDS By S.B. Damelin

The purpose of this paper is to demonstrate how many results concerning approximation, integration, and density on the sphere can be generalised to a much wider range of manifolds M , namely the compact homogeneous mani-folds. The essential ingredient is that invariant kernels (the generalisation of zonal or radial kernels) have a spectral decomposition in terms of projection kernels onto invar...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Kernel based quadrature on spheres and other homogeneous spaces

Quadrature formulas for spheres, the rotation group, and other compact, homogeneous manifolds are important in a number of applications and have been the subject of recent research. The main purpose of this paper is to study coordinate independent quadrature (or cubature) formulas associated with certain classes of positive definite and conditionally positive definite kernels that are invariant...

متن کامل

Heat kernels and the range of the trace on completions of twisted group algebras

Heat kernels are used in this paper to express the analytic index of projectively invariant Dirac type operators on Γ covering spaces of compact manifolds, as elements in the K-theory of certain unconditional completions of the twisted group algebra of Γ. This is combined with V. Lafforgue’s results in the untwisted case, to compute the range of the trace on the K-theory of these algebras, unde...

متن کامل

The Constant Mean Curvature Einstein flow and the Bel-Robinson energy

We give an extensive treatment of the Constant Mean Curvature (CMC) Einstein flow from the point of view of the Bel-Robinson energies. The article, in particular, stresses on estimates showing how the Bel-Robinson energies and the volume of the evolving states control intrinsically the flow along evolution. The treatment is for flows over compact three-manifolds of arbitrary topological type, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009